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Abstract

Weather-induced risk reduces farmers’ incomes, and climate change is increasing
such risk. One promising intervention to mitigate risk is high-quality, probabilistic,
short-to-medium-range weather forecasts, which predict weather between zero and fif-
teen days ahead. For forecasts to be effective, however, farmers have to understand
and act on them. This paper evaluates how farmers use probabilistic forecasts and
form beliefs about their accuracy in a lab-in-the-field experiment. In scenarios that
mimic real-world decision making, we find that farmers update their beliefs about
the (in)accuracy of forecasts following false alarms, where forecasts erroneously pre-
dict events. Farmers who experience false alarms perform worse in subsequent rounds
of incentivized experimental games, and report a lower willingness-to-pay for a real-
world weather forecast service in an incentive-compatible Becker–DeGroot–Marschak
elicitation. Light-touch interventions to improve probability comprehension and make
climate change salient have limited impact on farmer decision-making, with positive
effects that are mitigated by the incidence of false alarms.
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1 Introduction

Weather uncertainty is a significant source of agricultural production risk, particularly in

developing countries where farmers rely on relatively few ex post risk-coping strategies. Ac-

curate expectations of upcoming weather, at seasonal and sub-seasonal time scales, can help

farmers mitigate such risk (Giné et al., 2015) if their subsequent decisions are better suited

to realized conditions. However, with increasing weather variability (Krishnan et al., 2020;

Roxy et al., 2017; Auffhammer and Carleton, 2018, in India), forming accurate weather

expectations is harder, and high quality weather and climate forecasts gain renewed impor-

tance.

(Short-to-)Medium-range weather forecasts1 may help farmers better time agricultural ac-

tivities, better plan input allocation, and take precautionary measures. However, public

weather forecast providers in developing countries do not typically provide information-rich

forecasts: forecasts tend to be deterministic rather than probabilistic, tend to cover larger

geographic areas than forecasts in more developed countries (i.e., forecasts have coarser

granularity), and are often perceived to be less accurate than forecasts in developed coun-

tries (World Meteorological Organization). Accurate, probabilistic medium-range weather

forecasts may provide farmers in developing countries with a more comprehensive picture

of upcoming weather, and allow them to manage uncertainty in the forecast in a manner

appropriate for their decision-making trade-offs (Fundel et al., 2019).

To begin to use probabilistic medium-range weather forecasts, farmers need to accurately

comprehend the forecasts (Stephens et al., 2019) and trust the forecasts (Shafiee-Jood et al.,

2021). Existing evidence on probabilistic reasoning among rural populations in develop-

ing countries (reviewed in Delavande, 2014) is encouraging, indicating that farmers (and

others) understand probabilities and intuitively form probabilistic beliefs about uncertain

events across contexts. However, there has been limited focus on how farmers in develop-

ing countries form beliefs about the accuracy of forecasts, or learn to trust a new source of

information.

In this paper, we rely on randomly assigned video information treatments and two incentive-

compatible experimental games to study farmers’ forecast-dependent decision-making in a

hypothetical setting. The video treatments are designed to provide farmers with information

that highlights the relevance of weather forecasts in the context of climate change, and a

tutorial on interpreting probabilistic information contained in weather forecasts. Random

assignment to an experimental arm where farmers watch the first video, one where they

1We refer to forecasts with lead times of between 0 and 15 days as medium-range forecasts rather than
short-to-medium-range forecasts for ease of exposition. In all cases where we refer to weather forecasts,
without referring to a ‘range’, we refer to lead times of between 0 and 15 days. The American Meteorological
Society defines short-range forecasts as those provided 0 - 2 days ahead, and medium-range forecasts as those
provided between 2 and 15 days ahead. Source: https://www.ametsoc.org/index.cfm/ams/about-ams/ams-
statements/archive-statements-of-the-ams/weather-analysis-and-forecasting/
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watch both videos, or a control group (where farmers watch a placebo video) helps us assess

whether information-based learning helps farmers use forecasts better in the hypothetical

decision-making games that follow. In the incentive-compatible experimental games, farmers

make several rounds of decisions that rely on understanding information contained in weather

forecasts, observe a weather realization in each round, and earn a resultant payoff. Weather

forecasts were designed with input from meteorologists, and decision-making scenarios were

designed with input form agronomists and qualitative interviews with farmers. Farmers’

decisions in the two games, their earned payoffs, and a measure of their willingness-to-pay

for real-world weather forecasts helps us assess whether experience-based learning in the

game impacts how they use forecasts, and how they perceive forecast accuracy.

We recruit 1,212 small- and medium-holder coffee farmers in Karnataka, India for this study.

Farmers are randomized into one of the three experimental arms described above, watch their

assigned informational videos, and then play the two incentivized experimental games. In

the first game, farmers play five rounds, choosing in each round between two markets to sell

goods, with sales outcomes depending on weather conditions. Each round requires them to

interpret probabilistic weather forecasts for each of the two markets, and select the market

where they favorable weather conditions are more likely, to maximize their earnings. In the

second game, farmers play six rounds in which they use available weather information to

make agricultural decisions whose appropriateness depends on the realized weather, with

earnings again determined by chosen action and realized weather. Finally, we elicit farmers

willingness to pay for a real-world voice-call based service that provides accurate, granular,

probabilistic weather forecasts on a weekly basis, using an incentive-compatible Becker-

DeGroot-Marschak elicitation (Becker et al., 1964).

We find that that farmers in this context have high probability literacy. Though only 40%

of farmers answer both probability ‘test’ questions in the survey correctly, 57% of farmers

answer all five questions in the first experimental game correctly. In both games, farmers’

choices reflect their ability to factor forecast probabilities into their beliefs — farmers are

more likely to choose the favored market location in the first game when the difference in

the probabilities in the two forecasts is larger, and are more likely to make optimal decisions

for rain when rain is predicted with a higher probability in the second game. All farmers

are willing to take up, and 98% of farmers in the study sample are willing to pay more

than |0 for a new real world voice call based weather forecast service (|26 per month on

average, or 10% of the daily casual wage rate in Karnataka) providing weekly probabilistic

weather forecasts. This is high demand for accurate, probabilistic weather forecasts over

mobile phones.

Farmers assigned to watch both the probability tutorial and the video highlighting climate

change perform marginally better in the probability ‘test’ questions, are more likely to believe

that unexpected weather events will occur more frequently in the future, and have higher

scores in the first game — indicating that farmers do learn from the information in the two
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videos. However, the information treatments do not impact the accuracy of farmers’ choices

in either game (only impacting their reported confidence in some responses in the first).

Farmers assigned to watch both the probability tutorial and the video highlighting climate

change, however, report an 8% lower willingness-to-pay for the real-world weather service

(significant at the 10% level). This appears to be driven by those farmers who already report

accessing forecasts on the internet, suggesting that improved understanding of probabilities

might increase the perceived value of existing probabilistic weather forecasts.

Farmers’ choices in both games are significantly impacted by their recent experiences in each

game. Encountering a false alarm — where predicted weather fails to materialize despite

a greater than 50% forecasted likelihood — leads to more cautious subsequent choices and

a diminished belief in the accuracy of forecasts. A false alarm for rain (i.e., where rain is

predicted with 50% probability or greater) in a round in the second game prompts farmers

to be less likely to expect rain, or to expect rain only at higher forecast probabilities in

the following round, reflecting a lowered trust in forecast accuracy. Conversely, unexpected

rain — where rain occurs despite a low forecast probability — causes them to adjust their

expectations and expect rain at lower probabilities in the following round. Experiencing

false alarms in the first game appears to diminish the effects of learning from the probability

tutorial. Farmers who don’t experience false alarms demonstrate greater confidence in their

decisions during the first game, but this boost in confidence is mitigated for those who

encounter false alarms. Overall, farmers’ beliefs are impacted by false alarms that are more

recent than those further back in history. Finally, false alarms of unexpected dry conditions

in the games also lead to a 9.5% (significant at the 1% level) decline in farmers’ willingness-

to-pay for the real-world service, not driven by a corresponding decrease in farmers’ scores

and earnings. This reduction reflects a decline in farmers’ belief in the accuracy and utility of

weather forecasts after experiencing such false alarms, and is consistent with their decision-

making in the games.

Our findings suggest that farmers’ beliefs about the accuracy and utility of weather forecasts

are predominantly shaped by their recent experiences with forecast outcomes, more so than

any information provided about forecast utility. Our experimental design eliminates potential

biases due to order effects, forecast format effects, risk aversion, and misinterpretation of

probabilities. Additionally, by including both rounds choosing rainier and drier locations in

the first game, we ensure that farmers understand the distinction. Pre-game practice also

confirms farmers’ ability to recognize weather icons used in visual forecasts, further validating

the reliability of our results in assessing their decision-making and belief formation.

The main contribution of this paper is to the literature on learning, through the finding that

farmers’ decisions in the experimental games are impacted more by their experiences than

by information that they learn (e.g., in the psychology and economics literature, reviewed in

Malmendier (2021a); Conlon et al. (2022); or in technology adoption in agriculture, such as

in Foster and Rosenzweig (1995)). Similar to findings in D’Acunto et al. (2021) or Georganas
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et al. (2014), who examine the impact of experienced price changes on inflation expectations,

farmers in our study form beliefs about forecast accuracy based on their experiences in the

study and update these beliefs to a larger extent when they experience false alarms than

when predicted events occur.

Moreover, our finding that farmers are willing to pay less for a real-world forecast when they

experience false alarms in the game aligns with extensive research showing that individuals

tend to overestimate the likelihood of events they have previously experienced, regardless of

their knowledge of the true probabilities (Malmendier, 2021b; Tversky and Kahneman, 1974).

The tendency of farmers to be more influenced by recent false alarms rather than past ones is

consistent with the notion of recency bias (Tversky and Kahneman, 1974; Benjamin, 2019).

Overall, our study also adds to the growing body of literature on the use of gamification

for educational purposes in rural, developing regions (Tjernström et al., 2021; Alidaee, 2023;

Janzen et al., 2020).

Our results also contribute to the literature on farmers’ adaptation to increasing weather

uncertainty. With limited take-up of ex-post strategies such as index insurance (Cole and

Xiong, 2017), there has been increasing interest in expanding ex ante risk mitigation strate-

gies. Existing evidence (Emerick et al., 2016; Barnett-Howell, 2021; Karlan et al., 2014)

suggests that such strategies can have large effects on farmers’ investment and profits. With

improvements in weather forecasting skill, a near-zero marginal cost of provision, and a high

potential for scaling, providing farmers with granular weather forecasts is another such po-

tentially cost-effective mechanism (with seasonal forecasts explored in Lybbert et al. (2007);

Rosenzweig and Udry (2019); Burlig et al. (2022)). Weather forecasts at the short- and

medium-range can help farmers adjust factor allocation within season (Yegbemey et al.,

2023; Mase and Prokopy, 2014). Short-range weather forecasts provided through mobile

phones have had mixed impacts across contexts and over time (Fafchamps and Minten,

2012; Camacho and Conover, 2019; Yegbemey et al., 2023), and understanding how farmers

form beliefs about the weather and about the forecast service is important for designing an

effective and useful weather forecast service, and also has implications for digital extension

services overall (Fabregas et al., 2019; Cole and Fernando, 2020).

Finally, we demonstrate that providing uncertainty information does help farmers in a rural

developing country setting make better decisions, adding to similar research in developed

country settings (Stephens et al., 2019; Roulston et al., 2006; Roulston and Kaplan, 2009).

We also contribute empirical results to the literature that models how individuals learn to

trust and use weather forecasts (Millner, 2008; Shafiee-Jood et al., 2021).

2 Background

This study aims to understand whether conveying probabilistic rainfall forecasts to farmers

will aid farmer decision-making, and focuses on a weather-sensitive crop, coffee, in a region
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with increasingly variable weather, Karnataka, India. This section describes our study setting

and experimental design.

Setting. Coffee is a perennial crop that thrives in relatively cool, tropical weather. India is

the sixth-largest coffee producer in the world, and over 70% of India’s coffee is cultivated in

Karnataka, our study setting.2 Precision Development (PxD) and the Coffee Board of India

operate a voice-call based agricultural advisory service, Coffee Krishi Taranga (CKT), for

coffee farmers in Karnataka.3 Around 70% of all coffee farmers in Karnataka are registered

on the CKT service, and Table 1 describes characteristics of users, who were profiled in 2018.

While 60% of CKT’s user-base is small-holder farmers, who cultivate coffee on fewer than

5 acres, and 71% of our study-sample are small-holders Table 2. Forty-seven percent of the

CKT user-base are educated a higher secondary level or higher, while 40.9% of our study

sample has attained the same level of education. In 2018, 45% of CKT-user farmers had

access to a smartphone, and this is presumably far higher in 2023.4 In our study sample,

68.9% of farmers reported access to a smartphone, despite a larger share of small-holders

and smaller share of farmers with high levels of education, which are correlates of household

wealth.

Table 1: Coffee Krishi Taranga Users in 2018

Mean (SD) Obs

(1) (2)

Is female 0.117 42023
(0.321)

Age when profiled 51.032 42012
(13.212)

Area cultivated with coffee (acres) 8.801 42007
(23.896)

Educated to higher secondary level or above 0.475 30042
(0.499)

Cultivates Arabica 0.474 42022
(0.499)

Cultivates Robusta 0.782 42022
(0.413)

Has access to a smartphone in 2018 0.451 42020
(0.498)

Weather in Karnataka. Coffee is mainly grown in the Western Ghats region of Karnataka

2Statistics from the Coffee Board of India, accessed at https://coffeeboard.gov.in/
3More details about CKT are in the appendix.
4The GSMA The Mobile Economy 2023 report indicates that this is the case.
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(in the districts of Chikmagalur, Hassan and Kodagu). The region receives three times the

average rainfall in India (Varikoden et al., 2019), with definite changes in the characteristics

of the monsoon rainfall, extreme rainfall, and dry spells in the region (Sreenath et al., 2022;

Varikoden et al., 2019; Chandrashekhar and Shetty, 2017; Ha et al., 2020) Some of these

changes vary between the northern and southern Western Ghats (Varikoden et al., 2019).

As a result, monsoon rainfall patterns in the region are likely harder for farmers to predict

without high-quality weather forecasts. In addition, spatial variability of rainfall within the

region is large Figure 1, making weather forecasts of finer granularity more useful for farmers

as they adapt to the changing climate in the region.

Figure 1: Daily rainfall amount and variability in Karnataka
Notes: The larger outline is the state of Karnataka. The three districts outlined within are Kodagu, Chikmagalur and Hassan.

Analysis provided by Climate Forecasts Action Network (CFAN)

Weather Forecasts. In our study sample, 49% of farmers reported typically accessing

weather forecasts via television, radio, newspaper, or Kisan Call Centers. Forecasts on these

media are provided by the Indian Meteorological Department (IMD), and the IMD’s rainfall

forecasts are deterministic predictions of expected rainfall. Publicly available IMD weather

forecasts are at the weather-station level. However, weather station coverage varies from

multiple per city in large metropolises, to 1 per district in other regions.5 Forecasts are

presented to farmers at the district or the block levels in different media.

The context for this study is a new CKT weather forecast add-on service, which we offer to

farmers in the willingness-to-pay exercise described in Section 3. The weather forecasts we

5https://mausam.imd.gov.in/imd˙latest/contents/imd-dwr-network.php
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consider are short-to-medium range (i.e., at lead times of 0 to 15 days) precipitation forecasts

provided by the Climate Forecast Applications Network (CFAN). CFAN calibrates forecasts

generated from the European Centre for Medium-Range Weather Forecasts (ECMWF) en-

semble model for increased accuracy in the study region (with three grid-cells per block,

where IMD provided forecasts at the block or district levels). Apart from forecasts from the

IMD, farmers may also have access to weather forecasts available online or on mobile-phone

apps, and 39% of farmers in our study sample report that they do access such forecasts.

These forecasts are typically probabilistic. However, Figure 8 shows that, at least in some

cases, websites and apps provide forecasts for the nearest weather station location rather

than the actual town. In such cases, forecasts may be perceived by farmers to have finer

granularity than they actually do. Overall, CFAN’s forecasts provide finer granularity, richer

forecast information, and longer lead times. As part of the CKT service, raw forecasts can

also be customized to be contextually relevant for coffee farmers. Such forecasts could help

farmers better cope with weather variability, better allocate factor inputs, and minimize

adverse consequences of weather shocks by allowing them to take precautionary actions and

thus also avoid working in hazardous conditions.

3 Experimental Design

3.1 Sample and Randomization

The sample for this study was drawn from the rosters of small- and medium-holder cof-

fee farmers from the Coffee Board of India and existing users of Coffee Krishi Taranga in

Chikmagalur and Kodagu, two coffee-growing districts in Karnataka. We randomly selected

twenty-one gram panchayats (GPs) in two blocks in the two districts. Randomly sampled

farmers were initially invited to participate in the in-person study via telephone; if the re-

cruitment goals for a gram panchayat were not achieved, subsequent recruitment was carried

out in-person. Eligibility for the study required that the farmer manage a coffee farm of 18

acres or less and be aged between 18 and 65 years.

Farmers who agreed to participate during recruitment surveys were visited and enrolled in

the study in-person. Upon consent, farmers were randomized on-the-spot into one of three

groups: (1) an information intervention highlighting the salience of climate change in the

context of coffee cultivation via video (T1); (2) information intervention highlighting climate

change salience and providing basic training to improve understanding of probabilities via

video (T1 + T2); (3) a control group, with a placebo video describing the history of coffee

cultivation in India (C). The experiment was designed to have 42% of the sample in the

climate change salience arm, 29% of the sample in the climate change salience and probability

training arm, and 29% of the sample in the control group. This design maximizes power to

detect the effect of probability training when added to climate change information (T2 =

(T1 + T2) - T1) (Muralidharan et al., 2023), while maintaining similar levels of power on
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the other outcomes of interest, (T1 - C), ((T1 + T2) - C).6

Table 2 describes the characteristics of the sample that completed the study. Overall, 1,212

farmers completed the study across the 21 GPs, with a low attrition rate of about 2% that

did not significantly differ by group (Table 2). The distribution of participants across the

experimental groups closely matched the intended proportions of 42%, 29%, and 29% for each

treatment arm, indicating successful on-the-spot randomization. The study’s participants

had an average age of 48, with the majority (86%) being the primary decision-makers for

their agricultural operations. Most farmers (70%) manage coffee farms of 5 acres or less,

while the rest operate farms ranging from 5 to 18 acres. Smartphone access or ownership

is common among 69% of the farmers, yet only 32% utilize WhatsApp for communication.

Trust in available weather forecasts is relatively low, with only 35% of farmers expressing

confidence in them. The sample is well-balanced on the list of pre-specified farmer and farm

characteristics with significant imbalance in the climate change salience arm on only whether

coffee is the main source of income. A joint F-test confirms that these characteristics do not

predict treatment assignment, affirming the randomization’s integrity.

Coffee Farmers
(N=1,212)

[18 < age < 65; 0 < land < 18 acres]

Experimental Arm 1
(N1 = 511)

T1: Climate Change Salience

Experimental Arm 2
(N12 = 351)

T1 + T2: 
Climate Change Salience and 

Probability Training

Control
(NC = 350)

Placebo 

Probabilistic Weather Forecast 
Experimental Games

Willingness-To-Pay Elicitation

Figure 2: Experiment Design

6Similar levels of power when compared to a 1
3 ,

1
3 ,

1
3 design which maximizes power on (T1 - C), ((T1 +

T2)-C).
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Table 2: Randomization Balance

Treatments Obs

Mean (SD) Coefficient (SE) p-value

(1) (2) (3) (4) (5)

Control Climate Probability CC= Total
Change Training + PT + CC = Obs

Climate 0
Change

(CC) (PT+CC)

Is the primary decision maker 0.860 0.013 0.009 0.857 1212
(0.347) (0.024) (0.026)

Household size 3.931 0.007 0.058 0.840 1212
(1.419) (0.095) (0.109)

Age 48.360 -0.785 -0.221 0.562 1212
(11.084) (0.768) (0.845)

Educated to higher secondary level or above 0.409 -0.013 -0.022 0.840 1212
(0.492) (0.034) (0.037)

Is literate 0.966 0.001 -0.014 0.517 1212
(0.182) (0.013) (0.015)

Is female 0.243 0.015 0.019 0.824 1212
(0.429) (0.030) (0.033)

Has access to a smartphone 0.689 0.055* -0.002 0.094 1212
(0.464) (0.031) (0.035)

Uses WhatsApp 0.320 0.008 -0.009 0.872 1212
(0.467) (0.032) (0.035)

Is risk averse (implied CRRA risk aversion parameter >= 1.34) 0.446 0.028 0.062 0.262 1212
(0.498) (0.034) (0.038)

Trusts weather forecasts 0.357 -0.041 -0.024 0.456 1212
(0.480) (0.033) (0.036)

Coffee cultivation is the main source of income 0.914 -0.048** -0.032 0.072 1211
(0.280) (0.021) (0.022)

Cultivates coffee on <= 5 acres 0.711 -0.022 0.007 0.616 1212
(0.454) (0.032) (0.034)

Has access to functional irrigation facility 0.474 -0.031 -0.055 0.303 1212
(0.500) (0.033) (0.035)

Cultivates Arabica 0.774 -0.010 -0.017 0.813 1212
(0.419) (0.025) (0.026)

Cultivates Robusta 0.686 -0.019 -0.047 0.218 1212
(0.465) (0.026) (0.027)

Cherry coffee preparation 0.474 -0.018 -0.040 0.148 1212
(0.500) (0.020) (0.021)

p-value of joint F-test 0.341 0.487

Attrition 0.023 -0.003 -0.011 0.431 1212
(0.150) (0.010) (0.010)
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3.2 Information Treatments

Climate change salience: Farmers in the climate change salience experimental arm view

a 5.5-minute video detailing climate change effects on coffee cultivation in Karnataka, India.

The video outlines the increased challenges faced by local farmers due to rising temperatures,

unpredictable rainfall, and extreme weather events observed in the past ten years. It features

firsthand accounts from farmers, illustrating their struggles, and presents adaptive strategies,

emphasizing the utility of weather forecasts in agricultural planning and climate resilience.

Climate change salience and probability training: Farmers view a comprehensive

13.5-minute video combining a primer on probability using relatable examples and visual

tools, with the climate change video described above. The video makes probability concepts

clear using common scenarios, interactive elements, and visual aids, connecting these ideas

to their use in understanding rainfall forecasts. It further clarifies the concept of a reference

class in probabilistic predictions (Gigerenzer et al., 2009).

Control: Farmers in the control group view a brief video that chronicles the origins and

growth of coffee farming in India, from its inception to its current status.

3.3 Experimental Decision-Making Games

Location Choice Game: Here, farmers choose between two market locations to sell goods,

with sales dependent on weather conditions. The objective is to maximize earnings by using

probabilistic weather forecasts provided in both visual and textual formats. (Table B2,

Table B1)

After two practice rounds, farmers engage in five incentivized rounds, choosing markets based

on daily or weekly weather forecasts (Figure 4). They encounter scenarios where either ‘wet’

or ‘dry’ weather benefits sales, such as selling buttermilk on dry days or umbrellas on rainy

days. The game presents forecasts with fixed rainfall and variable probabilities or with both

parameters varying, challenging farmers with decisions of differing difficulty.7 The ex ante

correct choice, unaffected by risk preferences, always has a lower outcome variance and higher

expected earnings.

Farmers choose an investment from {1, 2, 3, 4, 5}, i.e., stake points on their market choice to

express confidence, with points awarded or deducted based on whether weather favorable for

sales is realized or not. Feedback after each round clarifies the effectiveness of their choices

and the role of chance in outcomes. This game design eliminates biases from risk aversion,

forecast format, and decision-making based on rain quantity versus likelihood, ensuring a

focus on the farmers’ ability to use forecasts effectively.

7In round variations where both quantities and probabilities in forecasts vary, higher quantities appears
with a higher probability since a higher quantity of forecast rain is correlated with a higher likelihood of any
rain
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Agricultural Decision-Making Game: This game challenges farmers to use weather fore-

casts for critical coffee farming decisions regarding irrigation and fertilizer application. After

a practice round, they undergo six incentivized rounds where they must decide whether to ir-

rigate during coffee blossoming or fertilize in the monsoon, based on probabilistic forecasts or

their own judgment (Figure 5). The forecasts’ probabilities vary from 10% to 90%, reflecting

real-world unpredictability and testing decision-making under varying levels of uncertainty.

Farmers receive forecasts through audio, or text and image to determine the best course of

action, with the game’s structure designed to prevent biases from round order or forecast

format. The scoring is straightforward: +5 for decisions that are ex-post appropriate, or

-5 for decisions that are ex-post inappropriate. Thus, the optimal action depends only on

whether the probability of rainfall is greater than or less than 50%. Feedback is provided

after each round to help farmers assess the optimality of their decisions and the influence

of chance on the outcomes. Details on the game’s structure and scenarios are outlined in

Table B2 and Table B1.

Weather forecast realizations: In the experimental games, the likelihood of forecast

events occurring corresponds to the probabilities provided by the forecasts, in line with the

methodology of Stephens et al. (2019).8

Scores and Payoffs: The scoring system incentivizes farmers to make decisions that max-

imize ex ante expected earnings/points. The rules are kept simple for ease of understanding

(Haaland et al., 2023; Conlon et al., 2022), but do not constitute ‘proper scoring rules’ (Pal-

frey and Wang, 2009). Farmers earn monetary incentives equal to their total points, with

a maximum possible earning of |110. In addition to game earnings, participants are also

compensated with an in-kind benefit valued at |150 for their involvement in the study.

Willingness to Pay Elicitation: Once farmers play the two hypothetical decision-making

games, we elicit their demand for a real-world audio probabilistic weather forecast service

using an incentive compatible Becker-DeGroot-Marschak (BDM) (Becker et al., 1964) mech-

anism.

Weather 
Expectations WTP

Practice

Location-Choice

Experimental Game 1

Agricultural 
Decision- Making

Experimental Game 2

Figure 3: Experiment Flow

8In meteorology, a ‘reliable’ forecast is one where there is consistency between the forecast probabilities
and the observed frequencies of weather events (Noted by the Collaboration for Australian Weather and
Climate Research).
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4 Experimental Results

4.1 Empirical Framework

Our empirical analysis employs a consistent strategy across different experimental games to

assess the impact of information interventions and experience on farmers’ decision-making.

We estimate the following general specification for outcomes at the individual level:

Yi = β0 + β1T
1
i + β2T

2
i + (β3FA

rain
i + β4FA

no rain
i ) +X

′

irα +Gg + ϵi (1)

where, Yi represents the outcome of interest for individual, i, such as total score, understand-

ing of probability, awareness of climate change, or willingness-to-pay for probabilistic weather

forecasts. T 1
i and T 2

i are indicators for assignment to the climate change salience video and

the probability training video, respectively. In certain analyses, we include FArain
ir , which

denotes the incidence of any false alarms (rain) in the agricultural decision-making game,

occurring when rain is forecasted with a probability of 50% or higher but fails to materialize;

and FAno rain
ir , which denotes the incidence of any false alarms (no rain) in the agricultural

decision-making game, occurring when rain is predicted with a probability of less than 50%

yet unexpectedly occurs. X ′
i is a vector of control variables selected via the double lasso

method, and Gg represents gram panchayat fixed effects. We use robust standard errors in

specifications at the individual level.

For the location choice game, we analyze whether farmers make the ex ante optimal choice,

and their chosen investment. We estimate:

Yir = β0 + β1T
1
i + β2T

2
i + β3FAir + γ4Dir

+Order
′

irα1 + Format
′

irα2 + V
′

irα3 + Q
′

irα4 + X
′

irα4 + Gg + ϵir (2)

In this equation, Yir is the outcome for individual i in round r, with Dir representing the

difference in forecast probabilities. The vectors Orderir, Formatir include fixed effects for

round order, forecast format. Vir indicates whether a round is a ‘wet’ or ‘dry’ round, and

Qir indicates whether quantities and probabilities or only probabilities vary across the two

forecasts in a round. FAir represents a false alarm experienced in the previous round, where

the forecasted weather event (rain or no rain with p > 0.5) did not occur as predicted.

Robust standard errors are clustered at the individual level to account for within-farmer

serial correlation.

For the agricultural decision-making game, we consider farmers decisions, and whether farm-

ers make the ex ante optimal decision. The specification for this game is similar but includes

variables for false positives and negatives, as well as the probability information provided in
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the forecasts:

Yir = β0 + β1T
1
i + β2T

2
i + β3FA

rain
ir + β4FA

no rain
ir + γ4Pir

+Order
′

irα1 + Format
′

irα2 + X
′

irα4 + Gg + ϵir (3)

In this model, FArain
ir denotes whether the previous round had a false alarm (rain), oc-

curring when rain is forecast with a probability of 50% or higher but fails to materialize;

and FAno rain
ir indicates whether the previous round had a false alarm (no rain), occurring

when rain is predicted with a probability of less than 50% yet unexpectedly occurs. Pir

reflects the forecasted probability in certain analyses and its deviation from 0.5 in others.

Robust standard errors are clustered at the individual level to account for within-farmer

serial correlation.

4.2 Learning from Information Treatments

We start by assessing learning from the video treatments (described in Section 3.2) by

measuring farmers’ understanding of probabilities, perceptions of climate change, and in-

terpretation of weather forecasts after viewing the videos. First, we evaluate probability

understanding with two ‘test’ questions posed immediately after the videos. The questions

use classic probability puzzles: one involving choosing a bag with a better chance of yielding

a black ball from a mix, and the other to identify the lottery offering higher likelihood of

winning from varying ticket counts. Farmers must identify which option has a higher likeli-

hood of a desired outcome and estimate the probability of that outcome. For climate change

perceptions, we ask farmers about their expectations of the frequency of future unseasonal

weather events. And, finally, to test weather forecast interpretation, we present a statement,

“there is a 60% chance of rain tomorrow in your block/taluka,” and assess understanding

through multiple-choice answers that reflect different interpretations of probability.

While only 40% of farmers in the control group and 38% of farmers who watch just the

climate change video correctly identified the more likely event in both probability questions

(column 1, Table 3), the addition of probability training to the climate change salience

intervention yielded a 5.8 percentage point or 14.5% relative improvement in probability

comprehension (significant at the 10% level).

Regarding climate change (column 2), 42% of farmers in the control group recognize a trend

towards more frequent unseasonal weather events. While the climate change salience video

alone has no impact on these perceptions, 6.7 percentage points or 15.9% more farmers

expect unseasonal weather more frequently in the future when probability training is added.

For forecast interpretation (column 3), 16% of control farmers correctly understood the

likelihood of rain, while 52% equated forecast probability with area coverage, which could

still lead to a consistent interpretation of the probability of rain at specific locations.
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Table 3: Understanding of probabilities, climate change and weather forecasts

Probabilities Climate Weather Index
Change Forecasts

Understands Expects Correctly First-
probability unseasonal interprets stage
in ‘test’ weather forecasts Index
questions more

frequently

(1) (2) (3) (4)

Climate change salience (CC) -0.023 0.007 0.014 0.005
(0.033) (0.029) (0.025) (0.038)

Probability training (PT)
[(CC + PT) - CC]

0.058∗ 0.067∗∗ 0.007 0.076∗∗

(0.033) (0.028) (0.026) (0.037)

CC + PT = 0, p-val 0.33 0.02 0.46 0.05

N 1212 1211 1212 1211
Outcome mean, comparison group 0.400 0.420 0.160 -0.000

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
All columns report results from a double lasso specifications. All specifications include GP fixed effects. Lasso controls are listed
in the Appendix. Climate change salience (T1) is an indicator that takes the value 1 when the farmer watches the climate change
video; Probability training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video,
which is estimated as (T1 + T2) - T1; since the probability training video is only ever watched along with the climate change
salience video, and never alone.

A composite standardized index of the three learning outcomes (in column 4) shows a sig-

nificant positive effect of the probability training and climate change salience videos (0.076

standard deviations), indicating a modest overall treatment impact in this arm.

4.3 Location Choice Game

In this section, we examine farmers’ performance in the incentivized location-choice game

(see Section 3, Table B2, Figure 4), and consider the effects of both instructional learning

and experiential learning on farmers’ strategic choices as the game progresses.
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Figure 4: A single round in the location-choice game (Game 1)

16



Fifty-six percent of farmers in the control group consistently make the correct location choice

in all game rounds. This proficiency in the game is notably higher than the proportion of

farmers who answer the probability ‘test’ questions correctly, suggesting that weather may

provide a more relatable context for understanding probability. Table 4 reveals that 85%

of decisions made by farmers in the control group across all rounds are ex ante optimal,

and farmers invest an average of 4.08 points per round. However, it also indicates that the

informational interventions do not significantly impact the likelihood of making the ex ante

optimal location choice or the number of points staked (investment).

Table 4: Outcomes in the Location Choice Game

Ex Ante Investment Investment Ex Ante Investment Investment Ex Ante Investment Investment
Optimal Chosen Weighted Optimal Chosen Weighted Optimal Chosen Weighted
Choice Ex Ante Choice Ex Ante Choice Ex Ante

Optimal Optimal Optimal
Choice Choice Choice

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Climate change salience (CC) -0.002 -0.007 0.004 0.001 0.025 0.034 -0.002 -0.007 0.003
(0.013) (0.049) (0.116) (0.014) (0.050) (0.119) (0.013) (0.049) (0.117)

Probability training (PT)
[(CC + PT) - CC]

0.008 0.071 0.089 0.008 0.071 0.089 0.011 0.105∗∗ 0.121

(0.013) (0.048) (0.111) (0.013) (0.047) (0.111) (0.013) (0.049) (0.119)

False alarm in preceding round -0.062∗∗∗ -0.344∗∗∗ -0.713∗∗∗ -0.054∗∗∗ -0.253∗∗∗ -0.628∗∗∗ -0.060∗∗∗ -0.305∗∗∗ -0.677∗∗∗

(0.011) (0.032) (0.091) (0.019) (0.058) (0.165) (0.013) (0.039) (0.105)

Climate change salience ×
False alarm in preceding round

-0.012 -0.126∗ -0.119

(0.024) (0.069) (0.195)

Probability training ×
False alarm in preceding round

-0.009 -0.132∗ -0.124

(0.025) (0.069) (0.202)

Difference between forecast probabilities 0.105∗∗∗ 0.339∗∗∗ 1.198∗∗∗ 0.105∗∗∗ 0.339∗∗∗ 1.199∗∗∗ 0.105∗∗∗ 0.338∗∗∗ 1.198∗∗∗

(0.020) (0.060) (0.164) (0.020) (0.060) (0.164) (0.020) (0.060) (0.164)

CC + PT = 0, p-val 0.65 0.21 0.46

N 6060 6060 6060 6060 6060 6060 6060 6060 6060
Outcome mean, comparison group 0.854 4.085 2.998 0.854 4.085 2.998 0.854 4.085 2.998

Robust standard errors, clustered at the individual level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications: GP fixed effects, order, format, an indicator for whether the round
requires that farmers choose the more likely event (as opposed to the less likely event), an indicator for whether forecasts differs only in probabilities (as opposed to forecasts that differ in both quantities and
probability. False alarm in the preceding round is an indicator that takes the value 1 when the expected event does not occur in the prior round, and 0 otherwise. Climate change salience (T1) is an indicator
that takes the value 1 when the farmer watches the climate change video; Probability training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video, which is
estimated as (T1 + T2) - T1; since the probability training video is only ever watched along with the climate change salience video, and never alone. The outcome in columns (1), (4), (7) is an indicator
which takes the value 1 if the farmer makes the correct choice, and 0 otherwise; the outcome in columns (2), (5), (8) is the investment that farmers choose in that round ∈ {1, 2, 3, 4, 5}, i.e., the number of points
at stake; the outcome in columns (3), (6), (9) is the investment if the farmer makes the correct choice and -investment if the farmer makes the wrong choice.

Experience or experience-based learning, however, plays a critical role in shaping farmers’

decisions. Table 4 and Table B3 demonstrate significant responsiveness to recent forecasting

errors, with a tendency to choose less accurately and invest more conservatively in rounds

following a false alarm, referring here to a forecasted event that fails to materialize as pre-

dicted. Table B3 further illustrates that the magnitude of this effect is proportional to the

difference in the two forecast probabilities between two presented options in a round. No-

tably, column (8) of Table 4 suggests that adding probability training to the climate change

salience intervention enhances investments in rounds that follow a correctly forecasted event,

but this effect is entirely offset in rounds preceded by a false alarm.

Table B4 provides further insights into the learning dynamics over the course of the game.
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Figure 5: A single round in the agricultural decision-making game (Game 2)

Columns 7, 8, and 9 compare rounds in which farmers have already experienced with rounds

where farmers have not experienced false alarms. When farmers have not encountered any

false alarms in the game, there is a discernible positive trend in both investment levels and

the selection of the ex ante optimal choice as the game progresses, although the latter is

only significant at the 10% level. Conversely, this learning effect is negated once farmers

experience false alarms. These result indicate that false alarms impede both learning over

time, and learning from instruction, with the strong results on ‘investment’ suggesting that

this may arise from a reduction in confidence, either in the accuracy of the forecasts or in

ability to interpret the forecast.

4.4 Agricultural Decision-Making Game

Here, we examine farmers’ choices in an incentivized agricultural decision-making game,

which simulates real-life farming decisions that are contingent on weather. The structure

and rules of the game are detailed in Section 3.3, summarized in Table B2, and an example

round is in Figure 5.

We first look at farmers’ decisions in rounds with no weather forecast information, where we
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assume that the ex ante optimal decision is to take an action appropriate for expected weather

based on the historical weather distribution in the region. In column (1), Table 5, we see

that neither informational intervention nor prior experiences with inaccurate forecasts (false

alarms for rain or false alarms for no rain) significantly impact farmers’ decisions. These

scenarios prompted farmers to think about the historical occurrence of ‘wet’ versus ‘dry’

weather in their villages when no forecasts were provided, and reflect farmers’ prior beliefs

about the likelihood of ‘wet’ conditions on average. While 20.3% of participants recommend

the action that is appropriate for ‘wet’ conditions in rounds without any forecasts,9 data from

NASA’s IMERG precipitation dataset (which is aggregated to the block-level) indicate that

the ‘wet’ conditions in each scenario occurred 10% of the time in the preceding twenty-two

years.10

Columns (2) and (3) in Table 5 present results from rounds with forecasts in the second

experimental game. Here, we evaluate whether farmers take decisions that maximize their

expected payoff in a round ex ante, based on the weather forecast they receive. Farmers

maximize their expected payoff in a round by selecting the action appropriate for ‘wet’

conditions when rain is forecasted with p > 0.5, and selection the action appropriate for

‘dry’ conditions when rain is forecated with p < 0.5.11 When farmers’ actions correspond to

these expectations, we classify them as optimal. In column (4), we pool all forecast rounds

(those where rain is predicted and where it is not), and evaluate whether farmers’ take the

action appropriate for ‘wet’ conditions alone. We do this so that we may interpret results as

being indicative of farmers’ belief in the likelihood of rain.

9Table B8 indicates that 15.4% of farmers recommended irrigation and 24.3% recommended fertilizer
application in the relevant rounds.

10Details here: https://gpm.nasa.gov/data/imerg
11Either action is optimal when p = 0.5, which occurs in 7.5% of observations. To simplify analysis, we

group p = 0.5 with p > 0.5, but results are unchanged if they are grouped with p < 0.5 instead. The
action appropriate for ‘wet’ conditions is to not irrigate in the irrigation scenario, and to not fertilizer in
the fertilizer application scenario. The action appropriate for ‘dry’ conditions is to irrigate in the irrigation
scenario, and to apply fertilizer in the fertilizer application scenario.
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Table 5: Outcomes in the Agricultural Decision Making Game

Ex ante Optimal Action Action
appropriate
for ‘wet’
conditions

No Forecast Forecast: Forecast: All Forecasts
Rainfall No Rainfall (Pooled)

(p >= 0.5) (p < 0.5)

(1) (2) (3) (4)

Climate change salience (CC) -0.029 -0.002 0.036 -0.019
(0.021) (0.024) (0.024) (0.017)

Probability training (PT)
[(CC + PT) - CC]

0.004 -0.000 -0.045∗ 0.025

(0.020) (0.024) (0.025) (0.017)

False alarm (rain) in preceding forecast round
[P [Rain] >= 0.5 & rain NOT realized]

0.008 -0.061∗∗ 0.088∗∗∗ -0.080∗∗∗

(0.024) (0.031) (0.031) (0.021)

False alarm (no rain) in preceding forecast round
[P [Rain] < 0.5 & rain realized]

-0.001 0.065∗∗ -0.034 0.055∗∗

(0.025) (0.030) (0.031) (0.021)

Forecast probability (deviation from 0.5)
(current round)

0.520∗∗∗ 0.362∗∗∗

(0.073) (0.083)

Forecast probability (current round) 0.501∗∗∗

(0.031)

CC + PT = 0, p-val 0.25 0.94 0.74 0.77

N 2424 2552 2296 4848
Outcome mean, comparison group 0.199 0.563 0.349 0.442

Robust standard errors, clustered at the individual level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications:
GP fixed effects, order, format.
False alarm in preceding round (rain) represents a false positive forecast in the preceding forecast round. The variable takes the value 1 when
rainfall was forecast with p >= 0.5, but does not occur, and is 0 otherwise. False alarm in the preceding round (no rain) represents a false
negative forecast in the preceding forecast round. The variable takes the value 1 when rainfall was forecast with p < 0.5, and occurs, and is 0
otherwise. Climate change salience (T1) is an indicator that takes the value 1 when the farmer watches the climate change video; Probability
training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video, which is estimated as (T1 + T2)
- T1; since the probability training video is only ever watched along with the climate change salience video, and never alone.
Outcomes: In columns (1), (2), (3) the outcome is an indicator which takes the value 1 if the farmer recommends taking the ‘optimal action’
in the scenario based on the probability of rainfall in the forecast they receive, and 0 otherwise. So, in scenarios where the forecast probability,
p >= 0.5, the outcome is 1 when the farmer recommends the action appropriate for ‘wet’ conditions, and 0 otherwise, while in scenarios where
the forecast probability, p < 0.5, the outcome is 1 when the farmer recommends the action appropriate for ‘dry’ conditions, and 0 otherwise. In
column (4), the outcome is 1 when the farmer recommends the action appropriate for ‘wet’ conditions, and is 0 otherwise, irrespective of the
forecast, allowing us to gauge whether farmers expect rain in any round.
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We see that the information treatments do not impact the likelihood of farmers’ selecting the

ex ante optimal action either in forecasts with rainfall predicted, p >= 0.5 or p < 0.5, nor

when we pool results in column (4). Table 5 indicates that farmers respond to the probability

in the forecasts, being more likely to recommend the action appropriate for ‘wet’ conditions

when rainfall is forecasted with a higher probability.

Experiencing false alarms plays a critical role in shaping farmers’ decision-making processes.

Results across columns (2), (3) and (4) indicate that farmers adjust their expectations of

rainfall based on the accuracy of previous forecasts. After a false alarms where rain was

forecast (P [rain] >= 0.5) but did not materialize, farmers appear more skeptical about

future rainfall predictions — farmers are less likely to expect rain, controlling for the forecast

probability. Conversely, when unexpected rain occurs despite a low forecast probability

(P [rain] < 0.5), farmers are more likely to expect rain, controlling for forecast probability.

Together, these results suggest that farmers adjust their beliefs in the accuracy of the forecast

following forecast errors or false alarms. Moreover, our analysis also indicates that farmers

are most impacted by the most recent false alarms that they experience. In Table B10, we

see robust evidence that the most recent false alarms significantly impact farmers’ decisions

across specifications where we progressively control for older false alarms. This suggests that

farmers continue to update their beliefs about the accuracy of forecasts as they continue to

interact with forecasts.

We next discern whether the observed effects are a direct consequence of forecast proba-

bilities or merely the occurence of rain. First, we look at whether the magnitude of the

forecasting error impacts farmers’ decisions in Table B6. Here, the incidence of false alarms

are weighted by the probability in the forecast that was errroneous.12 We find that the

magnitude of impact on farmers decisions is increasing in the magnitude of error, suggest-

ing that the probability conveyed in the forecast does impact farmers’ beliefs. Moreover,

when controlling for the mere occurence of rain without considering whether the forecast

was erroneous (Table B7), results indicate that while the absence of rain generally lowers

expectations of rainfall in following rounds, the impact of a false alarm predicting rain lowers

expectations even further. However, this distinction is not observed for false alarms predict-

ing no rain, suggesting that farmers’ beliefs are more adversely affected by missed forecasts

of rain than by unexpected rainfall. This suggests that there is strong evidence that farmers

do respond to and are discouraged by false alarms for rain in particular.

4.5 Willingness to Pay for Probabilistic Weather Forecasts

Once farmers complete the two games, we elicit their willingness to pay for weekly, accurate,

probabilistic forecasts over voice-calls to be provided via the Coffee Krishi Taranga service

run by Precision Development (PxD) with the Coffee Board of India. Willingness to pay

12False alarms for no rain are weighted by (1-p), while those for rain are weighted by p so that magnitudes
of effects in both cases are comparable.
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Figure 6: Willingness to Pay for Probabilistic Weather Forecasts

is elicited using an incentive compatible Becker-DeGroot-Marshak (BDM) (1964) mecha-

nism, relying on a binary search process (following Berkouwer and Dean (2022); Burlig et al.

(2022)). The weather forecasts being offered are produced by the Climate Forecast Applica-

tions Network (CFAN), and are for a period that covers critical weather sensitive activities

(harvesting, blossom irrigation, pre-monsoon fertilizer application) outside of the monsoon

season when rain is less frequent. Skill scores from re-forecasts over the last-six years indicate

that the accuracy in each district is over 90%. These forecasts are more granular than those

provided by the Indian Meteorological Department (IMD), and these forecasts are proba-

bilistic, while those provided by the IMD are deterministic. These forecasts are also likely

more granular than other forecasts available online. Farmers are told the following about

the weather forecasts they may purchase in the BDM exercise:

“The service being offered today is voice-call based weather forecasts from October 2023 to

May 2024. In this service, weather forecasts will be provided via voice-call for the upcoming

week, and will convey the likelihood of rainfall in % chance. The forecasts are more accurate

and for a smaller area than existing forecasts that are available here. In the last 6 years,

the forecasts correctly predicted rain in the upcoming week 92% [in Chikmagalur]/ 96% [in

Kodagu].”

The accuracy referred to above refers to the hit-rate13 for a cumulative weekly forecast, which

farmers have encountered in the decision-making game’s audio forecast rounds. We conduct

a practice BDM round prior to the main BDM exercise. Comprehension checks in the BDM

exercise for the weather forecast service indicate that most farmers understand the exercise

correctly.14

Table 6 indicates that farmers who experience false alarms for rainfall in the agricultural-

13Hit-rate or Probability of detection = hits
hits+misses (Collaboration for Australian Weather and Climate

Research) or the number of correctly forecast rainfall events over the total number of rainfall events
1493% of farmers correctly believe that they will purchase the forecasts if the BDM secret price is lower

than their final willingness to pay; and 78% correctly believe that they cannot purchase the forecasts if the
BDM secret price is higher than their final willingness to pay.
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Table 6: Willingness to Pay for Probabilistic Weather Forecasts

WTP WTP
(| per month) (| per month,

inverse
hyperbolic sine)

(1) (2) (3) (4)

Climate change salience (CC) -0.000 -0.009 -0.001 -0.002
(1.104) (1.105) (0.065) (0.064)

Probability training (PT)
[(CC + PT) - CC]

-2.057∗ -2.058∗ -0.139∗∗ -0.140∗∗

(1.136) (1.136) (0.068) (0.068)

Any false alarms (rain) in game 2 -2.460∗∗∗ -2.546∗∗ -0.133∗∗ -0.141∗∗

(0.948) (1.002) (0.056) (0.058)

Any false alarms (no rain) in game 2 0.901 0.993 0.085 0.094
(0.955) (0.987) (0.056) (0.060)

Total No. of Realizations in game 2 -0.134 -0.012
(0.490) (0.030)

CC + PT = 0, p-val 0.10 0.09 0.05 0.05

N 1212 1212 1212 1212
Outcome mean, comparison group 25.905 25.905 3.605 3.605

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix.
Controls that are in all specifications: GP fixed effects.
Any false alarms (rain) in game 2 takes the value 1 if the farmer encountered any false positive forecasts
(rainfall forecast with p >= 0.5, but does not occur) in game 2, and 0 otherwise; any false alarms (no rain)
in game 2 takes the value 1 if the farmer encountered any false negatives (rainfall forecast with p < 0.5,
and occurs) in game 2, and 0 otherwise; total number of realizations in game 2 is the number of times rain
is realized in game 2. Climate change salience (T1) is an indicator that takes the value 1 when the
farmer watches the climate change video; Probability training (T2) is an indicator that takes the value 1
when the farmer watches the probability training video, which is estimated as (T1 + T2) - T1; since the
probability training video is only ever watched along with the climate change salience video, and never alone.
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decision making game are willing to pay |2.46 less per month for the voice-call based weather

service than their counterparts who do not experience these forecast errors. The response

to false alarms for no rain (i.e., no rain is predicted, but rain occurs) is not significant,

however. This is consistent with results in Table B7, where only forecast alarms where rain

is erroneously predicted affected farmers’ belief in the likelihood of rain once mere realizations

were accounted for. In addition, the impact on willingness to pay suggests that the effect

does reflect farmers’ beliefs in the accuracy of the forecast. These results are also robust

to accounting for the magnitude of the forecast error in Table B12, and to controlling for

farmers’ scores in the experimental games Table B13. In addition, the impact of false alarms

on the total score in the preceding games in column (3) in Table B13 also indicates that the

false alarms where rain is erroneously predicted in the agricultural decision-making game

do not impact scores, reassuring us that neither the minimal boost in liquidity from game

winnings nor discouragement from performing worse in the game is driving this result.

Finally, we consider how farmers’ willingness-to-pay for real-world probabilistic weather fore-

casts responds to the information treatments. Recollect that Table 3 indicated that adding

probability training to the climate change salience informational treatment increased farm-

ers’ understanding of probabilities, and awareness of climate change. So, a reduction in

farmers’ willingness to pay for forecasts by |2.06 per month (or 7% of the control group’s

mean willingness to pay, significant at the 10% level) observed in Table 6 when farmers un-

dergo light-touch probability training is counter-intuitive. Figure 7 and Table B11 indicates

that this reduction in willingness to pay for forecasts in most pronounced among the sample

of farmers who report already having access to forecasts online, and who report already

having access to forecasts at the block level or below. This suggests that when farmers

improve understanding of probabilities and are made more aware of climate change, they

may see increased value in forecasts that they already have access to through the internet,

provided they are are perceived to be granular. This increased value may then result in a

lower willingness to pay for a paid forecast service when compared to farmers who do not

have access to such forecasts, since their second best option may now be perceived to be

better.
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Figure 7: Willingness to Pay for Probabilistic Weather Forecasts
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5 Discussion and Conclusion

We find that coffee farmers in Karnataka, India are willing to pay |26 per month (or 10% of

the mean daily wage rate in Karnataka), on average, to receive weekly mobile-phone based,

probabilistic, audio weather forecasts. Over 98% of farmers in the study sample are willing

to pay non-zero amounts for these forecasts, and all farmers report interest in using such a

service. This suggests that there is substantial demand for better quality better forecasts

among coffee farmers in Karnataka, India.

In incentivized decision-making games, most farmers correctly act on probabilities in weather

forecasts. More farmers are correct when they select a more/less likely forecast out of a

pair of forecasts than they are when they answer simple ‘test’ probability questions (57%

answer all rounds in the location-choice game correctly, while only 40% answer both ‘test’

questions correctly). In fact, even those farmers who do not answer all questions correctly, are

correct in 66% of their choices in the location-choice game, doing better when the difference

between the probabilities in the two forecasts is larger. Farmers’ responses in scenarios

designed to mimic real-world agricultural decision-making indicate that they are more likely

to expect rain to occur when the probability of rain in the forecast is higher. Together,

this reinforces findings in Delavande (2014) that rural populations in developing countries

understand probabilistic information, and suggests value in providing probabilistic weather

forecasts to a wider population.

While light-touch informational video on the salience of climate change has no impact on

farmers, adding probability training to the treatment improves farmers’ understanding of

probabilities, and awareness of climate change. This impact translates into larger invest-

ments in the location choice game when farmers experience positive reinforcement, suggest-

ing increased confidence in a concept they perhaps somewhat understand. However, this

improvement is completely set-back when farmers experience an erroneous forecast.

Importantly, this study sheds light on how farmers build trust in a new source of information.

Farmers’ responses in both experimental games indicate that farmers’ beliefs in the accuracy

of the weather forecast reduces in rounds that follow an erroneous forecast. Farmers’ beliefs

are most impacted by erroneous forecasts of rainfall, which are most recent. This suggests

that trust in forecasts can recover as farmers experience more accurate predictions, consistent

with simulation results in (Shafiee-Jood et al., 2021). However, if farmers get discouraged

from using following multiple consecutive forecast errors, trust in forecast accuracy may

not recover, providing some insights on trust and learning in the context of adopting new

technologies.
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A Figures

Accessed at https://www.wunderground.com/weather/in/mudigere on 3.13 AM IST on Nov 14, 2023.

Mudigere is 127 kms away from Mangalore International Airport

Accessed at https://www.wunderground.com/weather/in/somwarpet on 3.18 AM IST on Nov 14, 2023.

Somwarpet is 124 kms away from Kannur International Airport

Figure 8: Forecasts for Mudigere and Somwarpet in Karnataka, India on Weather Under-
ground
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Between 3 and 6 inches of rain is expected in 

the upcoming 10 days. There is a 60% chance 

that rainfall will exceed 2.5 inches on at least 

one day.

Quantities from historical 
weather realizations for that 
month for a 10 day period.

Heavy rain cut-off 
defined by IMD

Experimenters choose a % chance that 
varies across participants.

Realization is drawn from a 
distribution where the event being 
predicted occurs 60% of the time, and 
does not occur 40% of the time. 

No nuance on the “non-events” to 
reduce complexity (Stephens et al., 
2019).

Artificial forecasts created with input 
from meteorologists

Forecasts designed to be “relevant” 
for the agricultural practice in the 
scenario.

Figure 9: Examples of cumulative forecasts used in the games

Sequence of rainfall events 
from historical weather 
realizations for that month for a 
7 day period.

Experimenters choose a % chance that varies across 
participants.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

0% chance 
of rain

0% chance 
of rain

10% chance 
of 0.1 - 0.6 

inches of rain

40% chance 
of 0.1 - 0.6 

inches of rain

60% chance 
of 0.1 - 0.6 

inches of rain

50% chance 
of 0.1 - 0.6 

inches of rain

50% chance 
of 0.1 - 0.6 

inches of rain

Ranges reflect IMD’s light rain 
range.

Here, light rain over the week occurs 
with 60% chance since rainfall on each 
day are not multiple independent 
events, but rather one ‘event’. This 
reduces complexity.

Figure 10: Examples of day-by-day forecasts used in the games
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B Additional Tables

Table B1: Game Summary Statistics

N Mean Std. Dev. Min Max

Round 1

Lower probability out of the two options 6060 37.43 19.59 5.00 95.00

Higher probability out of the two options 6060 63.45 20.17 10.00 100.00

Difference in probability between the two options 6060 26.02 21.01 5.00 95.00

Rainfall realized after selecting a forecast 6060 0.49 0.50 0.00 1.00

Round 2

Probability in the forecast 4848 49.56 22.28 10.00 90.00

Rainfall realized after choosing an action 4848 0.50 0.50 0.00 1.00
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Table B2: Summary of the Experimental Games

Component Description Details

I. Location Choice Game

Objective Maximize expected earnings

- Advise hypothetical vendors on choice of
location to sell goods
- Sales depend on weather realization
- One correct choice for more likely to be dry (rainy)

Game Rounds

In each round:
- weather forecasts for two locations are provided
- farmers recommend a location
- in-game weather for the round is realized

Five incentivized rounds.
- Three one-day forecast rounds
- Two one-week forecast rounds

Scenarios
- One-day forecast scenario
- One-week forecast scenario

Randomized: order, Rainy vs. Dry location choice

Forecast Formats Images and text only No audio used

Variations
- Rainfall quantity constant, probability varies
- Rainfall quantity and probability vary

Randomized presentation

Probability Range Varying probabilities in forecasts
Differences in probabilities between forecast-pairs varies
from 5% - 95%

Scoring
Points awarded/deducted
based on accuracy, and stake chosen

- Points at stake can be selected from {1, 2, 3, 4, 5}
- If ideal weather for sale is realized, stake is awarded
- If ideal weather for sale is not realized, stake is deducted

Incentives Monetary rewards based on points | earned = points scored

II. Agricultural Decision-Making Game

Objective Maximize expected earnings
Advise hypothetical farmers on agricultural
actions based on expected weather. Scenarios
describe time-of-year, action, farmer details.

Game Rounds

In each round:
- weather forecasts (or no forecasts) are provided
- farmers recommend action (or inaction)
- in-game weather for the round is realized

Six incentivized rounds across two scenarios.
- Four rounds with forecasts
- Two rounds without forecasts

Scenarios
- Blossom irrigation
- Mid-monsoon fertilizer

Decisions based on probabilistic weather forecasts
or expectations based on historical incidence of weather

Forecast Formats Audio, image & text, and no forecast Varied to test information presentation effects

Probability Range Varying probabilities in forecasts
Forecasts predict rainfall with probabilities ∈
{10%, 20%, 30%, 35%, 40%, 45%, 50%,
55%, 60%, 65%, 70%, 80%, 90%}

Optimal Strategy
Farmers are incentivized to recommend (not)
taking the relevant action when rain or heavy
rain is (expected) not expected

Scenario 1 :
- Irrigate if rain is not expected,
- don’t irrigate if rain is expected
Scenario 2 :
- Apply fertilizer if heavy rain is not expected,
- don’t apply fertilizer if heavy rain is expected

Scoring
Five points awarded when recommended action
(or inaction) is appropriate for realized weather,
five points deducted otherwise

Scenario 1 :
- 5 points awarded for irrigation + no rain or
no irrigation + rain
- 5 points deducted for irrigation + rain or
no irrigation + no rain
Scenario 2 :
- 5 points awarded for fertilizer application + no heavy rain or
no fertilizer application + heavy rain
- 5 points deducted for fertilizer application + heavy rain or
no fertilizer application + no heavy rain

Incentives Monetary rewards based on points | earned = points scored
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Table B3: Impact of Weighted False Alarms in the Location Choice Game

Ex Ante Investment Investment Ex Ante Investment Investment Ex Ante Investment Investment
Optimal Chosen Weighted Optimal Chosen Weighted Optimal Chosen Weighted
Choice Ex Ante Choice Ex Ante Choice Ex Ante

Optimal Choice Optimal Choice Optimal
Choice Choice Choice Choice Choice

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Climate change salience (CC) -0.003 -0.010 -0.003 -0.002 -0.002 -0.002 -0.003 -0.010 -0.003
(0.013) (0.049) (0.117) (0.013) (0.050) (0.117) (0.013) (0.049) (0.117)

Probability training (PT)
[(CC + PT) - CC]

0.009 0.071 0.090 0.009 0.071 0.090 0.005 0.078 0.051

(0.013) (0.048) (0.112) (0.013) (0.048) (0.112) (0.013) (0.049) (0.115)

False alarm in preceding round (weighted) -0.115∗∗∗ -0.546∗∗∗ -1.279∗∗∗ -0.112∗∗ -0.470∗∗∗ -1.272∗∗∗ -0.129∗∗∗ -0.521∗∗∗ -1.423∗∗∗

(0.026) (0.070) (0.212) (0.046) (0.134) (0.393) (0.031) (0.083) (0.252)

Climate change salience ×
False alarm in preceding round (weighted)

-0.003 -0.107 -0.010

(0.054) (0.154) (0.456)

Probability training ×
False alarm in preceding round (weighted)

0.049 -0.085 0.496

(0.053) (0.147) (0.435)

Difference between forecast probabilities 0.104∗∗∗ 0.331∗∗∗ 1.184∗∗∗ 0.104∗∗∗ 0.331∗∗∗ 1.184∗∗∗ 0.104∗∗∗ 0.331∗∗∗ 1.183∗∗∗

(0.020) (0.061) (0.166) (0.020) (0.061) (0.166) (0.020) (0.061) (0.166)

CC + PT = 0, p-val 0.67 0.23 0.48

N 6060 6060 6060 6060 6060 6060 6060 6060 6060
Outcome mean, comparison group 0.854 4.085 2.998 0.854 4.085 2.998 0.854 4.085 2.998

Robust standard errors, clustered at the individual level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications: GP fixed effects, order, format, an indicator for whether the round requires that
farmers choose the more likely event (as opposed to the less likely event), an indicator for whether forecasts differs only in probabilities (as opposed to forecasts that differ in both quantities and probability. False alarm in the
preceding round (weighted) is a continuous variable, taking the value of the difference probabilities in the preceding round when a false alarm occurs, and zero when a false alarm does not occur. Climate change salience (T1)
is an indicator that takes the value 1 when the farmer watches the climate change video; Probability training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video, which is
estimated as (T1 + T2) - T1; since the probability training video is only ever watched along with the climate change salience video, and never alone. The outcome in columns (1), (4), (7) is an indicator which takes the
value 1 if the farmer makes the correct choice, and 0 otherwise; the outcome in columns (2), (5), (8) is the investment that farmers choose in that round ∈ {1, 2, 3, 4, 5}, i.e., the number of points at stake; the outcome in
columns (3), (6), (9) is the investment if the farmer makes the correct choice and -investment if the farmer makes the wrong choice.
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Table B4: Order Effects in the Location Choice Game

Ex Ante Investment Investment Ex Ante Investment Investment Ex Ante Investment Investment
Optimal Chosen Weighted Optimal Chosen Weighted Optimal Chosen Weighted
Choice Ex Ante Choice Ex Ante Choice Ex Ante

Optimal Optimal Optimal
Choice Choice Choice

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Climate change salience (CC) -0.016 -0.053 -0.059 -0.002 -0.007 0.008 -0.002 -0.008 0.008
(0.023) (0.070) (0.200) (0.013) (0.049) (0.116) (0.013) (0.048) (0.115)

Probability training (PT)
[(CC + PT) - CC]

0.008 0.071 0.097 0.003 0.101 0.132 0.010 0.078∗ 0.112

(0.013) (0.048) (0.110) (0.024) (0.067) (0.199) (0.013) (0.047) (0.109)

False alarm in preceding round -0.063∗∗∗ -0.342∗∗∗ -0.707∗∗∗ -0.063∗∗∗ -0.342∗∗∗ -0.707∗∗∗

(0.011) (0.032) (0.090) (0.011) (0.032) (0.090)

Order -0.007 -0.032∗ -0.046 -0.005 -0.019∗ -0.027 0.009∗ 0.051∗∗∗ 0.124∗∗∗

(0.006) (0.017) (0.051) (0.004) (0.011) (0.034) (0.005) (0.014) (0.041)

Climate change salience × Order 0.005 0.016 0.022
(0.007) (0.018) (0.057)

Probability training × Order 0.002 -0.010 -0.012
(0.007) (0.018) (0.057)

Any false alarms in the game
until current round

-0.064∗∗∗ -0.250∗∗∗ -0.635∗∗∗

(0.025) (0.068) (0.207)

Any false alarms in the game
until current round × Order

-0.005 -0.045∗∗ -0.082

(0.007) (0.019) (0.058)

Difference between forecast probabilities 0.106∗∗∗ 0.339∗∗∗ 1.182∗∗∗ 0.105∗∗∗ 0.338∗∗∗ 1.181∗∗∗ 0.105∗∗∗ 0.333∗∗∗ 1.175∗∗∗

(0.020) (0.061) (0.165) (0.020) (0.061) (0.164) (0.020) (0.060) (0.164)

N 6060 6060 6060 6060 6060 6060 6060 6060 6060
Outcome mean, comparison group, round 1 0.869 4.206 3.189 0.869 4.206 3.189 0.869 4.206 3.189

Robust standard errors, clustered at the individual level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications: GP fixed effects, format, an indicator for whether the round requires that
farmers choose the more likely event (as opposed to the less likely event), an indicator for whether forecasts differs only in probabilities (as opposed to forecasts that differ in both quantities and probability. False alarm
in the preceding round is an indicator that takes the value 1 when the forecasted event in the ex ante optimal choice does not occur in the prior round, and 0 otherwise. Any false alarms in the game is an indicator that
takes the value 1 when the farmer experience at least one false alarm across all rounds of the game. Climate change salience (T1) is an indicator that takes the value 1 when the farmer watches the climate change video;
Probability training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video, which is estimated as (T1 + T2) - T1; since the probability training video is only ever watched
along with the climate change salience video, and never alone. The outcome in columns (1), (4), (7) is an indicator which takes the value 1 if the farmer makes the correct choice, and 0 otherwise; the outcome in columns
(2), (5), (8) is the investment that farmers choose in that round ∈ {1, 2, 3, 4, 5}, i.e., the number of points at stake; the outcome in columns (3), (6), (9) is the investment if the farmer makes the correct choice and
-investment if the farmer makes the wrong choice.
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Table B5: Difficulty Effects in the Location Choice Game

Ex Ante Investment Investment Ex Ante Investment Investment Ex Ante Investment Investment
Optimal Chosen Weighted Optimal Chosen Weighted Optimal Chosen Weighted
Choice Ex Ante Choice Ex Ante Choice Ex Ante

Optimal Optimal Optimal
Choice Choice Choice

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Climate change salience (CC) -0.015 -0.014 -0.136 -0.001 -0.007 0.009 -0.001 -0.006 0.009
(0.017) (0.058) (0.142) (0.013) (0.049) (0.116) (0.013) (0.049) (0.116)

Probability training (PT)
[(CC + PT) - CC]

0.008 0.070 0.094 0.001 0.094∗ 0.047 0.008 0.070 0.094

(0.013) (0.048) (0.111) (0.015) (0.056) (0.133) (0.013) (0.048) (0.111)

False alarm in preceding round -0.062∗∗∗ -0.342∗∗∗ -0.708∗∗∗ -0.062∗∗∗ -0.341∗∗∗ -0.709∗∗∗ -0.055∗∗∗ -0.338∗∗∗ -0.668∗∗∗

(0.011) (0.032) (0.089) (0.011) (0.032) (0.089) (0.016) (0.045) (0.126)

Difference in prob <0.25 -0.053∗∗∗ -0.126∗∗∗ -0.594∗∗∗ -0.038∗∗∗ -0.103∗∗∗ -0.428∗∗∗ -0.031∗∗∗ -0.114∗∗∗ -0.384∗∗∗

(0.017) (0.045) (0.136) (0.011) (0.031) (0.087) (0.009) (0.028) (0.079)

Climate change salience ×
Difference in prob <0.25

0.026 0.015 0.268∗

(0.020) (0.055) (0.160)

Probability training ×
Difference in prob <0.25

0.013 -0.044 0.085

(0.019) (0.054) (0.154)

False alarm in preceding round ×
Difference in prob <0.25

-0.013 -0.006 -0.073

(0.022) (0.058) (0.178)

N 6060 6060 6060 6060 6060 6060 6060 6060 6060
Outcome mean, comparison group 0.854 4.085 2.998 0.854 4.085 2.998 0.854 4.085 2.998

Robust standard errors, clustered at the individual level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications: GP fixed effects, order, format, an indicator for whether the round
requires that farmers choose the more likely event (as opposed to the less likely event), an indicator for whether forecasts differs only in probabilities (as opposed to forecasts that differ in both quantities and
probability. False alarm in the preceding round is an indicator that takes the value 1 when the expected event does not occur in the prior round, and 0 otherwise. Climate change salience (T1) is an indicator
that takes the value 1 when the farmer watches the climate change video; Probability training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video, which is
estimated as (T1 + T2) - T1; since the probability training video is only ever watched along with the climate change salience video, and never alone. The outcome in columns (1), (4), (7) is an indicator
which takes the value 1 if the farmer makes the correct choice, and 0 otherwise; the outcome in columns (2), (5), (8) is the investment that farmers choose in that round ∈ {1, 2, 3, 4, 5}, i.e., the number of points
at stake; the outcome in columns (3), (6), (9) is the investment if the farmer makes the correct choice and -investment if the farmer makes the wrong choice.
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Table B6: Impact of Weighted False Alarms in the Agricultural Decision Making Game

Ex ante Optimal Action Action
appropriate
for ‘wet’
conditions

No Forecast Forecast: Forecast: All Forecasts
Rainfall No Rainfall (Pooled)

(p >= 0.5) (p < 0.5)

(1) (2) (3) (4)

Climate change salience (CC) -0.029 -0.002 0.035 -0.020
(0.021) (0.024) (0.024) (0.017)

Probability training (PT)
[(CC + PT) - CC]

0.004 -0.001 -0.045∗ 0.025

(0.020) (0.024) (0.025) (0.017)

False alarm (rain) in preceding forecast round
[P [Rain] >= 0.5 & rain NOT realized], weighted

0.025 -0.105∗∗ 0.136∗∗∗ -0.126∗∗∗

(0.038) (0.049) (0.049) (0.033)

False alarm (no rain) in preceding forecast round
[P [Rain] < 0.5 & rain realized], weighted

0.008 0.160∗ -0.137 0.191∗∗∗

(0.073) (0.089) (0.096) (0.064)

Forecast probability (deviation from 0.5)
(current round)

0.519∗∗∗ 0.359∗∗∗

(0.073) (0.083)

Forecast probability (current round) 0.500∗∗∗

(0.031)

CC + PT = 0, p-val 0.25 0.91 0.72 0.78

N 2424 2552 2296 4848
Outcome mean, comparison group 0.199 0.563 0.349 0.442

Robust standard errors, clustered at the individual level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications:
GP fixed effects, order, format.
False alarm in the preceding round (rain) (weighted) represents a false positive forecast in the preceding forecast round. The variable takes the
value 1 × the probability in the forecast when rainfall was forecast with p >= 0.5, but does not occur, and is 0 otherwise. False alarm in the
preceding round (no rain) (weighted) represents a false negative forecast in the preceding forecast round. The variable takes the value 1 ×
the probability in the forecast when rainfall was forecast with p < 0.5, but does occur, and is 0 otherwise.
Climate change salience (T1) is an indicator that takes the value 1 when the farmer watches the climate change video; Probability
training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video, which is estimated as (T1 + T2)
- T1; since the probability training video is only ever watched along with the climate change salience video, and never alone.
Outcomes: In columns (1), (2), (3) the outcome is an indicator which takes the value 1 if the farmer recommends taking the ‘optimal action’
in the scenario based on the probability of rainfall in the forecast they receive, and 0 otherwise. So, in scenarios where the forecast probability,
p >= 0.5, the outcome is 1 when the farmer recommends the action appropriate for ‘wet’ conditions, and 0 otherwise, while in scenarios where
the forecast probability, p < 0.5, the outcome is 1 when the farmer recommends the action appropriate for ‘dry’ conditions, and 0 otherwise. In
column (4), the outcome is 1 when the farmer recommends the action appropriate for ‘wet’ conditions, and is 0 otherwise, irrespective of the
forecast, allowing us to gauge whether farmers expect rain in any round.
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Table B7: Impact of Rainfall Realizations and False Alarms in the Agricultural Decision-
Making game

Action appropriate for ‘wet’ conditions

Rain is NOT Rain is realized All rounds
realized in preceding

in preceding forecast round
forecast round

(1) (2) (3)

Climate change salience (CC) -0.012 -0.033 -0.018
(0.022) (0.027) (0.017)

Probability training (PT)
[(CC + PT) - CC]

0.002 0.063∗∗ 0.025

(0.022) (0.028) (0.017)

Rain NOT realized in preceding forecast round -0.070∗∗∗

(0.018)

False alarm (rain) in preceding forecast round
[P [Rain] >= 0.5 & rain NOT realized]

-0.048∗∗ -0.048∗∗

(0.024) (0.023)

False alarm (no rain) in preceding forecast round
[P [Rain] < 0.5 & rain realized]

0.022 0.013

(0.025) (0.024)

Forecast probability (current round) 0.515∗∗∗ 0.468∗∗∗ 0.499∗∗∗

(0.040) (0.049) (0.031)

CC + PT = 0, p-val 0.69 0.30 0.72

N 2964 1884 4848
Outcome mean, comparison group 0.435 0.506 0.474

Robust standard errors, clustered at the individual level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications:
GP fixed effects, order, format. The outcome is 1 when the farmer recommends the action appropriate for ‘wet’ conditions, and is 0 otherwise,
irrespective of the forecast, allowing us to gauge whether farmers expect rain in any round.
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Table B8: Decisions in the Agricultural Decision Making Game, by scenario

Irrigate Apply Fertilizer

Forecast No Forecast No
Round Forecast Round Forecast

Round Round

(1) (2) (3) (4)

Climate change salience (CC) -0.015 0.007 0.073∗∗ -0.045∗

(0.025) (0.024) (0.031) (0.024)

Probability training (PT)
[(CC + PT) - CC]

-0.008 0.018 0.002 0.031

(0.023) (0.025) (0.032) (0.023)

False alarm (rain) in preceding forecast round
[P [Rain] >= 0.5 & rain NOT realized]

-0.043 -0.138∗∗∗ 0.034 -0.033

(0.027) (0.030) (0.040) (0.030)

False alarm (no rain) in preceding forecast round
[P [Rain] < 0.5 & rain realized]

-0.008 0.087∗∗∗ 0.010 0.024

(0.030) (0.029) (0.038) (0.031)

Forecast probability (current round) 0.693∗∗∗ 0.293∗∗∗

(0.040) (0.046)

CC + PT = 0, p-val 0.38 0.35 0.03 0.58

N 1212 2424 1212 2424
Outcome mean, comparison group 0.154 0.500 0.243 0.463

Robust standard errors, clustered at the individual level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table B9: Forecast Format Effects in the Agricultural Decision Making Game

Action appropriate for ‘wet’ conditions

Audio Text & Image All Forecasts
Forecasts Forecasts

(1) (2) (3) (4) (5) (6)

Climate change salience (CC) -0.033 -0.007 -0.003 -0.019 -0.019 -0.019
(0.023) (0.023) (0.022) (0.017) (0.017) (0.017)

Probability training (PT)
[(CC + PT) - CC]

0.019 0.031 0.025 0.037∗ 0.025 0.024

(0.024) (0.023) (0.017) (0.022) (0.017) (0.017)

False alarm (rain) in preceding forecast round
[P [Rain] >= 0.5 & rain NOT realized]

-0.055∗ -0.099∗∗∗ -0.079∗∗∗ -0.079∗∗∗ -0.095∗∗∗ -0.080∗∗∗

(0.032) (0.029) (0.021) (0.021) (0.029) (0.021)

False alarm (no rain) in preceding forecast round
[P [Rain] < 0.5 & rain realized]

0.054∗ 0.068∗∗ 0.055∗∗ 0.054∗∗ 0.055∗∗ 0.071∗∗

(0.029) (0.031) (0.021) (0.021) (0.021) (0.031)

Forecast probability (current round) 0.624∗∗∗ 0.380∗∗∗ 0.500∗∗∗ 0.501∗∗∗ 0.501∗∗∗ 0.501∗∗∗

(0.044) (0.042) (0.031) (0.031) (0.031) (0.031)

Audio Forecasts 0.020 0.004 -0.007 0.001
(0.028) (0.022) (0.020) (0.021)

Climate change salience (CC)
× Audio Forecasts

-0.032

(0.029)

Probability training (PT)
× Audio Forecasts

-0.024

(0.029)

False alarm (rain)
× Audio Forecasts

0.032

(0.042)

False alarm (no rain)
× Audio Forecasts

-0.031

(0.041)

N 2424 2424 4848 4848 4848 4848
Outcome mean, comparison group 0.523 0.440 0.481 0.481 0.481 0.481

Robust standard errors, clustered at the individual level, in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications: GP fixed effects, order, format.
False alarm in preceding round (rain) represents a false positive forecast in the preceding forecast round. The variable takes the value 1 when rainfall was forecast with
p >= 0.5, but does not occur, and is 0 otherwise. False alarm in the preceding round (no rain) represents a false negative forecast in the preceding forecast round. The variable
takes the value 1 when rainfall was forecast with p < 0.5, and occurs, and is 0 otherwise. Climate change salience (T1) is an indicator that takes the value 1 when the farmer
watches the climate change video; Probability training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video, which is estimated
as (T1 + T2) - T1; since the probability training video is only ever watched along with the climate change salience video, and never alone.
Outcomes:The outcome is 1 when the farmer recommends the action appropriate for ‘wet’ conditions, and is 0 otherwise, irrespective of the forecast, allowing us to gauge whether
farmers expect rain in any round. Columns 1, 2 consist of rounds where farmers receive an audio forecast; columns 3, 4 consist of rounds where farmers receive an image/text
based forecast.
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Table B10: Impact of False Alarms in Recent Round in the Agricultural Decision Making
Game

Action appropriate for ‘wet’ conditions

(1) (2) (3) (4) (5)

False alarm (rain) in round−1

[P [Rain] >= 0.5 & rain NOT realized]
-0.093∗∗ -0.098∗∗∗ -0.086∗∗∗ -0.076∗∗∗ -0.080∗∗∗

(0.036) (0.029) (0.026) (0.024) (0.021)

False alarm (rain) in round−2

[P [Rain] >= 0.5 & rain NOT realized]
-0.046 -0.015 0.005 -0.009

(0.041) (0.032) (0.029) (0.027)

False alarm (rain) in round−3

[P [Rain] >= 0.5 & rain NOT realized]
-0.008 -0.020 -0.035

(0.039) (0.031) (0.029)

False alarm (rain) in round−4

[P [Rain] >= 0.5 & rain NOT realized]
-0.023 -0.023

(0.041) (0.038)

False alarm (rain) in round−5

[P [Rain] >= 0.5 & rain NOT realized]
0.007

(0.056)

False alarm (no rain) in round−1

[P [Rain] < 0.5 & rain realized]
0.048 0.066∗∗ 0.061∗∗ 0.056∗∗ 0.055∗∗

(0.039) (0.030) (0.027) (0.025) (0.021)

False alarm (no rain) in round−2

[P [Rain] < 0.5 & rain realized]
0.039 0.012 0.015 0.014

(0.043) (0.035) (0.030) (0.026)

False alarm (no rain) in round−3

[P [Rain] < 0.5 & rain realized]
0.028 0.024 0.019

(0.040) (0.034) (0.030)

False alarm (no rain) in round−4

[P [Rain] < 0.5 & rain realized]
0.063 0.022

(0.041) (0.033)

False alarm (no rain) in round−5

[P [Rain] < 0.5 & rain realized]
-0.021

(0.042)

Climate change salience (CC) -0.007 -0.015 -0.026 -0.017 -0.019
(0.030) (0.024) (0.021) (0.019) (0.017)

Probability training (PT)
[(CC + PT) - CC]

0.001 0.009 0.020 0.013 0.025

(0.029) (0.024) (0.021) (0.019) (0.017)

Forecast probability (current round) 0.478∗∗∗ 0.456∗∗∗ 0.449∗∗∗ 0.475∗∗∗ 0.501∗∗∗

(0.054) (0.044) (0.038) (0.034) (0.031)

N 1592 2424 3251 4037 4848
Outcome mean, comparison group 0.404 0.430 0.446 0.442 0.442
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Table B11: Willingness to Pay for Probabilistic Weather Forecasts, by Existing Access to
Weather Forecasts

WTP WTP WTP WTP
(| per month) (| per month, (| per month) (| per month,

inverse inverse

hyperbolic hyperbolic

sine) sine)

(1) (2) (3) (4)

Climate change salience (CC) -0.057 -0.002 -0.056 -0.001
(1.108) (0.065) (1.105) (0.065)

Probability training (PT)
[(CC + PT) - CC]

-3.554∗ -0.246∗∗ -3.528∗∗ -0.235∗∗

(1.823) (0.111) (1.582) (0.096)

No access to online forecasts -1.262 -0.078
(1.902) (0.108)

Probability training ×
No access to online forecasts

2.677 0.188

(2.203) (0.132)

No access to granular forecasts -1.993∗ -0.088
(1.183) (0.068)

Probability training ×
No access to granular forecasts

3.405 0.219∗

(2.122) (0.125)

Any false alarms (rain) in Round 2 -2.496∗∗∗ -0.135∗∗ -2.491∗∗∗ -0.134∗∗

(0.952) (0.056) (0.950) (0.056)

Any false alarms (no rain) in Round 2 0.877 0.084 0.884 0.085
(0.955) (0.057) (0.955) (0.056)

N 1212 1212 1212 1212
Outcome mean, comparison group 25.905 3.065 29.905 3.605

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications:
GP fixed effects. Any false alarms (rain) in round 2 takes the value 1 if the
farmer encountered any false positive forecasts (rainfall forecast with p >= 0.5, but does not occur) in round 2, and 0 otherwise; any false alarms
(no rain) in round 2 takes the value 1 if the farmer encountered any false negatives (rainfall forecast with p < 0.5, and occurs) in round 2, and 0
otherwise; Climate change salience (T1) is an indicator that takes the value 1 when the farmer watches the climate change video; Probability
training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video, which is estimated as (T1 + T2)
- T1; since the probability training video is only ever watched along with the climate change salience video, and never alone; no access to
online forecasts takes the value 1 when the farmer indicates that they do not already access weather forecasts on the internet in the pre-experiment
survey, and is 0 otherwise; no access to granular forecasts take the value 1 when the farmer indicates that the weather forecasts they currently use
are provided only at the district level or higher in the pre-experiment survey, and is 0 otherwise.
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Table B12: Willingness to Pay for Probabilistic Weather Forecasts

WTP WTP
(| per month) (| per month,

inverse
hyperbolic sine)

(1) (2) (3) (4)

Climate change salience (CC) 0.016 0.012 -0.000 -0.001
(1.105) (1.107) (0.065) (0.064)

Probability training (PT)
[(CC + PT) - CC]

-2.071∗ -2.072∗ -0.140∗∗ -0.140∗∗

(1.136) (1.137) (0.068) (0.068)

Mean weighted false alarm (rain) in game 2 -8.976∗∗ -9.154∗∗ -0.581∗∗ -0.622∗∗

(4.168) (4.491) (0.244) (0.260)

Mean weighted false alarm (no rain) in game 2 2.502 2.803 0.383 0.452
(7.012) (7.342) (0.414) (0.442)

Total no. of realizations in game 2 -0.057 -0.013
(0.511) (0.031)

CC + PT = 0, p-val 0.10 0.10 0.05 0.05

N 1212 1212 1212 1212
Outcome mean, comparison group 25.905 25.905 3.605 3.605

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in
all specifications: GP fixed effects. Mean weighted false alarm (rain) in game 2 is the average of weighted false positives (in-
dicator for the instance where rainfall was forecast with p >= 0.5 and does not occur × probability in the forecast) across all
rounds in the second game; mean weighted false alarm (no rain) in game 2 is the average of weighted false negatives (indicator
for the instance where rainfall was forecast with p < 0.5 and does occur × probability in the forecast) across all rounds in the
second game; Climate change salience (T1) is an indicator that takes the value 1 when the farmer watches the climate change
video; Probability training (T2) is an indicator that takes the value 1 when the farmer watches the probability training video,
which is estimated as (T1 + T2) - T1; since the probability training video is only ever watched along with the climate change
salience video, and never alone.
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Table B13: Willingness to Pay for Probabilistic Weather Forecasts & Total Score in the
Experimental Games

WTP WTP Total WTP WTP
(| per month) (| per month, Score (| per month) (| per month,

inverse inverse

hyperbolic hyperbolic

sine) sine)

(1) (2) (3) (4) (5)

Climate change salience (CC) -0.071 -0.002 -0.144 -0.061 -0.002
(1.100) (0.064) (0.938) (1.098) (0.064)

Probability training (PT)
[(CC + PT) - CC]

-2.054∗ -0.139∗∗ 1.351 -2.147∗ -0.144∗∗

(1.137) (0.068) (0.978) (1.135) (0.068)

Any false alarm (rain) in game 2 -2.432∗∗ -0.132∗∗ -0.820 -2.376∗∗ -0.130∗∗

(0.947) (0.056) (0.820) (0.947) (0.056)

Any false alarm (no rain) in game 2 0.851 0.085 -3.122∗∗∗ 1.065 0.095∗

(0.952) (0.056) (0.817) (0.951) (0.056)

Any false alarms in game 1 -1.556 -0.027 -12.535∗∗∗ -0.697 0.015
(1.117) (0.067) (0.950) (1.214) (0.071)

Total score in experimental games 0.069∗∗ 0.003∗

(0.034) (0.002)

N 1212 1212 1212 1212 1212
Outcome mean, comparison group 25.905 3.605 70.717 25.905 3.605

Robust standard errors in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

All columns report results from a double lasso specifications. Lasso controls are listed in the Appendix. Controls that are in all specifications: GP fixed effects.
Any false alarms (rain) in game 2 takes the value 1 if the farmer encountered any false positive forecasts (rainfall forecast with p >= 0.5, but does not occur)
in game 2, and 0 otherwise; any false alarms (no rain) in game 2 takes the value 1 if the farmer encountered any false negatives (rainfall forecast with p < 0.5,
and occurs) in game 2, and 0 otherwise; total number of realizations in game 2 is the number of times rain is realized in game 2.
Climate change salience (T1) is an indicator that takes the value 1 when the farmer watches the climate change video; Probability training (T2) is an indicator
that takes the value 1 when the farmer watches the probability training video, which is estimated as (T1 + T2) - T1; since the probability training video is only
ever watched along with the climate change salience video, and never alone.
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C Data

Variables included as possible controls in the double lasso algorithm include:

1. Demographic characteristics: whether the farmer is a primary decision maker in

the household ; household size; farmer’s age; whether the farmer is literate; whether the

farmer is female; whether the farmer has access to a smartphone; whether the farmer

uses WhatsApp; farmer’s level of risk aversion; whether the farmer has completed at

least higher secondary education.

2. Farming characteristics: whether coffee cultivation is the main source of income;

whether the farm is irrigated; whether the farmer grows Arabica coffee; whether the

farmer grows Robusta coffee; whether the farmer harvests coffee cherry preparation;

whether the farmer is a small-holder (cultivating coffee on between 0 and 5 acres of

land); whether the farmer reports having experienced weather-related stress in the past;

whether the farmer reports having experienced unexpected losses due to weather.

3. Individual characteristics due to sampling or attrition: whether the farmer

is different from the individual initially recruited; whether the farmer was recruited

in-person or over the phone; whether the farmer is a CKT user; whether the farmer is

a replacement respondent due to attrition.

4. Existing access to weather forecasts: Whether the farmer reports accessing fore-

casts online or on weather apps in the pre-experiment survey; whether the farmer re-

ports accessing forecasts at a block-level or lower granularity in the pre-experiment sur-

vey; whether the farmer reports trust in their existing forecasts in the pre-experiment

survey (a response of 4 or 5 on a 5-point Likert scale).
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D Description of Coffee Krishi Taranga

Coffee Krishi Taranga (CKT) is a mobile-phone based agricultural advisory service for coffee

farmers in India. It is operated by Precision Development (PxD) with the Coffee Board of

India. In Karnataka, CKT reaches 70% of all coffee farmers. Advisory consists of voice-

call based advisory messages consisting of agronomic advice, market prices, information on

subsidies, etc. Agronomic messages are designed by agronomists, contrain advice on key

coffee agricultural practices, and are sent out to farmers at appropriate times in the year.

CKT also has an in-bound service or a hotline, where famers may dial in to record questions

that may not have been addressed in the outgoing calls. Responses to these questions are

recorded by agronomists, and delivered to farmers. CKT does not currently provide weather

forecasts to farmers on it’s voice-call service beyond alerts on extreme weather events, such

as cyclones and heat waves. However, CKT’s administrative data on user access at the

block level between 2019 and 2022 in Table B15 indicates that demand for information not

provided in outgoing calls responds to weather in the preceding week. We break this down by

periods that correspond to different baseline weather, and coffee practices. Between March

and May, coffee plants typically blossom, and require irrigation or rainfall showers in order

to do so. This is the pre-monsoon period in the region, and is typically dry with sporadic

showers. Blossoming requires moderate amounts of rainfall (between 1 and 2 inches of rain

over a week). Column (1) indicates that there are 18% fewer inbound calls following a week

with rainfall above the 75th percentile of historical weekly rainfall distribution in that block

during such a week suggesting lower demand for information when plants plausibly received

enough water.15 During the monsoon period (June - September) when baseline weather is

typically rainy, column (2) indicates that inbound calls increase by 29% following a week

with rainfall below the 25th percentile of historical weekly rainfall distribution in that block.

Finally, during the harvest period (October - February), which is after the monsoon, rainfall

is not frequent. However, unseasonal heavy rains can disrupt harvesting and make it harder

for farmers to dry their harvested coffee beans. Column (3) indicates that in this period,

inbound calls increase by 13% following a week with rainfall above the 75th percentile.

15Daily rainfall incidence at the block level comes from NASA’s IMERG (Integrated Multi-satellitE Re-
trievals for GPM) dataset for the years 2000 - 2022.
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Table B15: Inbound Calls on Coffee Krishi Taranga between 2019 and 2022

(1) (2) (3)

Blossom Monsoon Harvest
March - May June - Sept Oct - Feb

Preceding week rain ≥ 75th percentile -8.877∗∗ 1.232 5.773∗∗

(3.472) (2.889) (2.055)

Preceding week rain ≤ 25th percentile -3.490 10.148∗∗ -2.460
(5.719) (3.596) (2.824)

N 985 1265 1449
Outcome mean, omitted group 47.640 34.451 45.621

Robust standard errors clustered at the block level in parentheses. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The outcome is the total number of inbound calls in a week at the block-level in the specified months.
All columns present the results from regressions of the outcome on a dummy indicating that rainfall in
the preceding week was above the 75th percentile of the 20000 - 2022 distribution for that week in that
block; a dummy indicating that rainfall in the preceding week was below the 25th percentile of the
20000-2022 distribution for that week in that block; year, week-of-year, and block fixed effects.

E Conceptual Framework

We consider farmers making decisions under uncertainty about upcoming weather (over the

short-to-medium term, i.e., 1-to-15 days16), when they have access to probabilistic weather

forecasts (adapting Millner (2008) and Shafiee-Jood et al. (2021)). We assume that farmers

are quasi-Bayesian learners, who may not accurately interpret probabilities in the weather

forecasts.

E.1 Subjective beliefs about upcoming weather

We consider a representative farmer making decisions at time, t, where there are two pos-

sible states of upcoming weather, θt ∈ Θ = {0, 1} — a dry state (θt = 0), and a rainy

state (θt = 1). For that particular time-of-year, farmers have a prior belief about upcom-

ing weather informed by climatology, current observations, localized knowledge, experience

(Roncoli et al., 2002; Millner, 2008; Shafiee-Jood et al., 2021).17 We denote this prior be-

lief, pt(θt), with pt(θt = 1) = p1,t and pt(θt = 0) = 1 − p1,t. Farmers receive probabilistic

rainfall forecasts, πt(θ̂t), where πt(.) is a probability mass function, and θ̂t ∈ Θ = {0, 1},
πt(θ̂t = 1) = pr,t, and πt(θ̂t = 0) = 1− pr,t. However, farmers may interpret the probability

in the forecast, and so the the signal received by a farmer is, π̃t(θ̂t = 1) = p̃r,t = (pr,t)
α,

where α ≥ 1. When farmers correctly interpret the probabilistic information in the weather

forecast, α = 1.

16Meteorological definitions of short/medium/long range forecasts
17A farmer’s subjective prior belief may differ from the base rate, pb, which we assume to be the objective

historical frequency of the event occurring at a particular time-of-year.
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Figure 14: Posterior beliefs as forecast probability varies

The farmer’s posterior belief about upcoming weather is:

p1|π,t = pt(θt|π̃t(θ̂t)) =
∑

θ̂t∈{0,1}

π̃t(θ̂t)
pt(θ̂t|θt)pt(θt)

pt(θ̂t)
(4)

We assume that a farmer’s belief in the accuracy of the forecast, pt(θ̂t|θt) = τ ∼ ft(.) where

ft(τ) is a probability distribution function over [0, 1] (Shafiee-Jood et al., 2021).18 So,19

pt[θt = 1|π̃t(θ̂t), τ ] = p̃r,t
pt(θ̂t = 1|θt = 1)pt(θt = 1)

pt(θ̂t = 1)
+ (1− p̃r,t)

pt(θ̂t = 0|θt = 1)pt(θt = 1)

pt(θ̂t = 0)

= p̃r,t
τp1,t

τp1,t + (1− τ)(1− p1,t)
+ (1− p̃r,t)

(1− τ)p1,t
(1− τ)p1,t + τ(1− p1,t)

(5)

and,

p1|π̃,t =

∫ 1

0

p[θt = 1|π̃t(θ̂t), τ ]ft(τ)dτ (6)

18Following (Millner, 2008), we assume that τ is the same for each state of the world, i.e., p(θ̂ = 1|θ =

1) = p(θ̂ = 0|θ = 0) = τ and p(θ̂ = 1|θ = 0) = p(θ̂ = 0|θ = 1) = 1− τ
19This implies that when a farmer believes that the forecast is completely accurate or τ = 1, p1|π,t = pr,t;

when τ = 0.5, p1|π,t = p1,t; and when a farmer believes that the forecast is completely inaccurate or τ = 0,
then p1|π,t = 1 − pr,t. So, when 0.5 < τ < 1, p1|π,t is increasing in pr,t, and when 0 < τ < 0.5, p1|π,t is
decreasing in pr,t
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Updating beliefs. Once actual weather, ϑt ∈ Θ = {0, 1}, is realized, farmers update their

subjective beliefs about the likelihood of the ‘rainy’ state. So,

p1,(t+1) = Φ(p1,t, ϑt) (7)

such that p1,(t+1) > p1,t if ϑt = 1, and p1,(t+1) < p1,t if ϑt = 0.

Farmers also update their beliefs about the accuracy of the forecast for the next period. So,

ft+1(τ) = ft[τ |π̃(θ̂), ϑt].
20

ft+1(τ) = ϑt

{
p̃r,t

τft(τ)

µτ,t

+ (1− p̃r,t)
(1− τ)ft(τ)

1− µτ,t

}
+ (1− ϑt)

{
p̃r,t

(1− τ)ft(τ)

1− µτ,t

+ (1− p̃r,t)
τft(τ)

µτ,t

}
(8)

p1|π̃,(t+1) =

∫ 1

0

{
p̃r,(t+1)

τp1,(t+1)

τp1,(t+1) + (1− τ)(1− p1,(t+1))

+ (1− p̃r,(t+1))
(1− τ)p1,(t+1)

(1− τ)p1,(t+1) + τ(1− p1,(t+1))

}
ft+1(τ, p̃r,t, ϑt)dτ (9)

E.2 Decision Making

Farmers who receive weather forecasts make agricultural decisions based on their posterior

beliefs about upcoming weather, p1|π̃,t. In this study, we consider one-shot decisions at a

specific point in time, where it is optimal for farmers to take such actions when they expect

appropriate weather, and not take the action when they do not expect appropriate weather.

The farmer’s optimization problem is then:

max
at∈{0,1}

Ep1|π̃,t

[
U(at, θt)

]
(10)

where a = 1 when the farmer takes the action, and a = 0 otherwise, and the farmer chooses

to take an action iff:

Ep1|π̃,t

[
U(at = 1, θt)

]
≥ Ep1|π̃,t

[
U(at = 0, θt)

]
(11)

Value of weather forecasts. Farmers value weather forecasts if their expected utility

when they receive weather forecasts is larger than their expected utility when they do not

20Derivations are in the Appendix. µt =
∫
τft(τ)dτ ,
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receive weather forecasts. The ex ante value of a weather forecast requires considering all

possible values that the forecast may take (Millner, 2008).

VF,t = E[Vp1|π̃,t
]− E[Vp1,t ] =

∫
π̃t

{ ∑
θ̂t∈{0,1}

π̃t(θ̂t)p(θt|θ̂t)U(a′t, θt)

}
q(π̃t)dπ −

∑
θt∈Θ

p1,t(θt)U(at, θt)

(12)
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